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/Threshold

Cryptography

t allows to use a cryptographic
ey for signing, with a subset of
distributed key shares.

The system Is functional, even
if not all the shares are
retrieved. There is a minimum
threshold of shares needed,
usually n/2+1




ryptography

Some
/I'hreshold
Je

Signing
algorithms

RSA: Practical Threshold Signatures
(V. Shoup)
e 1 Round (Keygen and signing)
e Joining k SigShares allows us to generate an individual
signature.
e RSA s avery common algorithm for signatures

ECDSA: Using Level-1 Homomorphic Encryption To Improve
Threshold DSA Signatures For Bitcoin Wallet Security
(D. Boneh, R. Gennaro, S. Goldfeder)

e ? rounds (Keygen) and 4 rounds (signing)

e SK Is distributed and encrypted with threshold

homomorphic encryption

e ECDSA Signatures are smaller and more secure than

RSA signatures.




9.2 dHSM

Collection of libraries that act
like a HSM. They use threshold
cryptography to SIgn
documents and distribute the
shares between a number of
different devices

<[>

PKCS#11 APl compilant
(OpenDNSSEC, KNOT)

Nodes communicate between
them using ZMQ library

C++ and Go implementations

Cheaper deployment,
compared with real HSM.
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History

Client Iuniiiiiii;
C

Server lient
Server

node g

ot ‘m > Client
C++ implementation \ —
with a separated One point of failure Server
master node g it

Server

Client
More latency m
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History

Client
C++ implementation
without separated Complex installation l \
master node (client
Client

acts like the master
node)

Client

Server Client
Server

Signer must have at Cieot

least one port open to
nodes
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History

2019

Reimplemented in Go
Go Modules
installation.

Library server deleted

(no need of open port).

RSA and ECDSA
signatures
Implementation




How does it work?

Initial Configuration

o Compile DTC library in server
which has installec
OpenDNSSEC o

o Compile DTCNode in each
participant node

e Create configfiles with
communication keys

e Configure OpenDNSSEC to
use DTC as PKCS#11 library




How does it work?

Key Creation
(RSA Case)

o OPENDNSSEC asks to

the library to create a

KSK key palr

e Librarycreates KSK key
with t-of-n threshold
delivering key shares to
all the connected nodes




How does it work?

Key Creation
(RSA Case)

® [ he connected nodes
ACK the successfu
storage of key shares.




How does it work?

Signing Process
(RSA Case)

o OPENDNSSEC asks to

the library to sign a RR

e LibrarysendsaRR tobe
signed to all the
connected nodes.




How does it work?

Signing Process
(RSA Case)

e [henodessignthe zone
and return their
signature shares.

e [heshares are joined by
the client, generating a
signature.




How does it work?

Key Creation
(ECDSA Case)

o OPENDNSSEC asks tothe library to

create a KSK key pair.

o ||
c

4

brary genera

ncryption scr

tes athresr

old Paillier’s

eme keypailr,

istributes a S

each node.

< share anc

- and
the PK to




How does it work?

Key Creation
(ECDSA Case)

-ach node encrypts a
~andom value with
Paillier's PK and sends it
to the client.




How does it work?

Key Creation
(ECDSA Case)

e [hevalues are

NOMOMO
a Paillier

oroadcasted by the client
to all nodes, and and each
node joins them

~phically to form

-ncrypted SK.
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How does it work?

Signing Process
(ECDSA Case)

o OPENDNSSEC asks to the

Ibrary to sign a RR.

e Librarysendsthe RR to
each node.




How does it work?

Signing Process
(ECDSA Case)

e tach node returns its own
encrypted randomness to be
used In the process.




How does it work?

Signing Process
(ECDSA Case)

e [ hevalues are broadcasted
by the C

dlnC

Pal

dgg
ler-

ient to other nodes
regated using Level 2

nased homomorphic

encryption in 4 rounds.




How does it work?

Signing Process
(ECDSA Case)

e After the four rounds, the
client and all the nodes
ogenerate a Paillier-encrypted
signature.

e [he Nodes send decryption
shares to the client to
decrypt the signature.




TCRSA DTCNODE

Uses Go native libraries Process that runs on
only each node
Components

TCPAILLIER TCECDSA
All of then:v are available at hrashold Paillier Threshold ECDSA
https://niclabs.cl/tchsm Cryptosystem impl. Signing impl.
Wikl and Documentation: OTC HeM-SIGNER
https://github.com/niclabs/dtc/wiki ~
PKCS#11 Go implemented zone
library signer

1C

HILUE
RESEARCH LABS


https://github.com/niclabs/tcrsa
https://github.com/niclabs/tcrsa

Measurements on PC with seventh gen Intel
Core 1/ processor, Ubuntu 18.04 and 8 GB of
RAM

Features

O
o K_ey o
Compile Time . Signing Time
P Generation shiNg
-3 minutes ~10s RSA/1024  ~100 signatures/second
~3m RSA/2048 RSA

~3m ECDSA/256  ~25 signatures/second
- CDSA




Future Work

1nd b
Z9r HE

Implement other Implement other  Try other uses for

cryptographic communication the library
schemes and storage (Apart from
(That support platforms DNSSEC)
threshold crypto) (

Besides ZMQ ﬁ\ll
and SQLite) vy
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Fco. Cifuentes y Fco. Montoto
Firsts designs and implementations of DTCHSM.
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