Author

T
L g
17
| § ’
4
1 v . e
g 3 B ™ 230 e T — = e St S S ‘s !
T T 3 i - N -
| & i
' J
; i G
;‘. Y "
~B .
-
- L
EL 3
- '
E —~ - ¢ -t A
¥ et
Critesvasvseuanine
.
" E 138 |
e = v _
. i
wi EBI : o .
e e : :
- = - v o 3 :
g = - -~ s by - Y = ‘.' - L 5 : "
- P e ;ﬁ " “’ =i 1) s V- —— X ' |
Sedwe r— e o - Rt IS ATme % = .
- 5. 0 ~ ke * i a =
" L JON = s ) e :
I a 3 ) - > - '
2 > . - v mw‘ X
- - .""S:_f e
- U “ Z -~
t_":- ~ - . - - 1 -m‘” . -
'ﬁ' janai v,

Hugo Salga:

— i ‘A .y

i : ~ i . .
e . ) r amh < i n ‘\ - e :
- 0 P
{ w - R

S . — ]

’ N = : T

!-‘— 2 A 4

ey .
- ¥
2T o
5 a& -
8 S &
O e

|

CL/

-

.
=

JIC Ch

e

C Chile
le Resea

e o™ g

\\-'; ¥
o~
‘
) 4
———
o
T e
L3 o~
SrE K

g

o WP et —~
¢
.
A
\
\
™
- B

rch Labs

Ty =

’
3 ; o
e e ®oty
:“?""'s’vﬁ’:“ -
¥ 3 N e
______,__...-—-—F =
S —

o

N Y
Whacs

19

<

-

| .

o g

1C

HIULE
RESEARCH LABS




/Threshold

Cryptography

t allows to use a cryptographic
ey for signing, with a subset of
distributed key shares.

The system Is functional, even
if not all the shares are
retrieved. There is a minimum
threshold of shares needed,
usually n/2+1




ryptography

Some
/I'hreshold
Je

Signing
algorithms

RSA: Practical Threshold Signatures
(V. Shoup)
e 1 Round (Keygen and signing)
e Joining k SigShares allows us to generate an individual
signature.
e RSA s avery common algorithm for signatures

ECDSA: Using Level-1 Homomorphic Encryption To Improve
Threshold DSA Signatures For Bitcoin Wallet Security
(D. Boneh, R. Gennaro, S. Goldfeder)

e ? rounds (Keygen) and 4 rounds (signing)

e SK Is distributed and encrypted with threshold

homomorphic encryption

e ECDSA Signatures are smaller and more secure than

RSA signatures.




9.2 dHSM

Collection of libraries that act
like a HSM. They use threshold
cryptography to SIgn
documents and distribute the
shares between a number of
different devices

<[>

PKCS#11 APl compilant
(OpenDNSSEC, KNOT)

Nodes communicate between
them using ZMQ library

C++ and Go implementations

Cheaper deployment,
compared with real HSM.

RESEA

L
RCH LABS




History

Client Iuniiiiiii;
C

Server lient
Server

node g

ot ‘m > Client
C++ implementation \ —
with a separated One point of failure Server
master node g it

Server

Client
More latency m

1C

HILUE
RESEARCH LABS



History

Client
C++ implementation
without separated Complex installation l \
master node (client
Client

acts like the master
node)

Client

Server Client
Server

Signer must have at Cieot

least one port open to
nodes

1C

HILUE
RESEARCH LABS



History

2019

Reimplemented in Go
Go Modules
installation.

Library server deleted

(no need of open port).

RSA and ECDSA
signatures
Implementation




How does it work?

Initial Configuration

o Compile DTC library in server
which has installec
OpenDNSSEC o

o Compile DTCNode in each
participant node

e Create configfiles with
communication keys

e Configure OpenDNSSEC to
use DTC as PKCS#11 library




How does it work?

Key Creation
(RSA Case)

o OPENDNSSEC asks to

the library to create a

KSK key palr

e Librarycreates KSK key
with t-of-n threshold
delivering key shares to
all the connected nodes




How does it work?

Key Creation
(RSA Case)

® [ he connected nodes
ACK the successfu
storage of key shares.




How does it work?

Signing Process
(RSA Case)

o OPENDNSSEC asks to

the library to sign a RR

e LibrarysendsaRR tobe
signed to all the
connected nodes.




How does it work?

Signing Process
(RSA Case)

e [henodessignthe zone
and return their
signature shares.

e [heshares are joined by
the client, generating a
signature.




How does it work?

Key Creation
(ECDSA Case)

o OPENDNSSEC asks tothe library to

create a KSK key pair.

o ||
c

4

brary genera

ncryption scr

tes athresr

old Paillier’s

eme keypailr,

istributes a S

each node.

< share anc

- and
the PK to




How does it work?

Key Creation
(ECDSA Case)

-ach node encrypts a
~andom value with
Paillier's PK and sends it
to the client.




How does it work?

Key Creation
(ECDSA Case)

e [hevalues are

NOMOMO
a Paillier

oroadcasted by the client
to all nodes, and and each
node joins them

~phically to form

-ncrypted SK.

1C

HILUE
RESEARCH LABS



How does it work?

Signing Process
(ECDSA Case)

o OPENDNSSEC asks to the

Ibrary to sign a RR.

e Librarysendsthe RR to
each node.




How does it work?

Signing Process
(ECDSA Case)

e tach node returns its own
encrypted randomness to be
used In the process.




How does it work?

Signing Process
(ECDSA Case)

e [ hevalues are broadcasted
by the C

dlnC

Pal

dgg
ler-

ient to other nodes
regated using Level 2

nased homomorphic

encryption in 4 rounds.




How does it work?

Signing Process
(ECDSA Case)

e After the four rounds, the
client and all the nodes
ogenerate a Paillier-encrypted
signature.

e [he Nodes send decryption
shares to the client to
decrypt the signature.




TCRSA DTCNODE

Uses Go native libraries Process that runs on
only each node
Components

TCPAILLIER TCECDSA
All of then:v are available at hrashold Paillier Threshold ECDSA
https://niclabs.cl/tchsm Cryptosystem impl. Signing impl.
Wikl and Documentation: OTC HeM-SIGNER
https://github.com/niclabs/dtc/wiki ~
PKCS#11 Go implemented zone
library signer

1C

HILUE
RESEARCH LABS


https://github.com/niclabs/tcrsa
https://github.com/niclabs/tcrsa

Measurements on PC with seventh gen Intel
Core 1/ processor, Ubuntu 18.04 and 8 GB of
RAM

Features

O
o K_ey o
Compile Time . Signing Time
P Generation shiNg
-3 minutes ~10s RSA/1024  ~100 signatures/second
~3m RSA/2048 RSA

~3m ECDSA/256  ~25 signatures/second
- CDSA




Future Work

1nd b
Z9r HE

Implement other Implement other  Try other uses for

cryptographic communication the library
schemes and storage (Apart from
(That support platforms DNSSEC)
threshold crypto) (

Besides ZMQ ﬁ\ll
and SQLite) vy

L
RESEARCH LABS




Fco. Cifuentes y Fco. Montoto
Firsts designs and implementations of DTCHSM.

Acknowledgements

Eduardo Riveros

Implementation and design of current version of
DITCHSM.

Flaticon

lcons from Smashicons, itim1201 and Freepik, Creative Commons on



https://flaticon.com

Hugo Salgado
hugo@nic.cl

Eduardo Riveros
Slides author

eduardo@niclabs.cl




